Properties

Label 52488.sz.36.de1
Order $ 2 \cdot 3^{6} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:S_3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}cdhi^{2}, d, fi, gi, i, c^{2}d^{2}, ef^{2}i^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5.S_3^3$
Order: \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.S_3^3$, of order \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_3^6.Q_8.S_3^2.C_2$
$W$$C_3:S_3^3$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^4:S_3^3$
Normal closure:$C_3^3.C_3^4.C_2$
Core:$C_3^4:S_3$
Minimal over-subgroups:$C_3^3.C_3^4.C_2$$C_3^4.C_3:S_3.C_2$$C_3^4.S_3^2$$C_3^4.(C_6\times S_3)$
Maximal under-subgroups:$C_3^4:S_3$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5.S_3^3$