Subgroup ($H$) information
| Description: | $C_3^2:C_6$ |
| Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,13,16)(2,18,17)(3,15,4)(5,9,14)(6,10,7)(8,11,12)(20,24,23), (1,13,16) \!\cdots\! \rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^5.S_3^3$ |
| Order: | \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_3^3.S_3^2$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Automorphism Group: | $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $3$ |
The quotient is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^5.C_3.C_6^3.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
| Centralizer: | $C_3^3.C_3^3$ | |
| Normalizer: | $C_3^5.S_3^3$ | |
| Minimal over-subgroups: | $C_3^2\wr C_2$ | |
| Maximal under-subgroups: | $C_3^3$ | $C_3:S_3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^5.S_3^3$ |