Properties

Label 52272.a.792._.B
Order $ 2 \cdot 3 \cdot 11 $
Index $ 2^{3} \cdot 3^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}$
Order: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Index: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 363 & 0 \\ 0 & 35 \end{array}\right), \left(\begin{array}{rr} 273 & 0 \\ 0 & 273 \end{array}\right), \left(\begin{array}{rr} 362 & 0 \\ 0 & 34 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{396}.D_{66}$
Order: \(52272\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 11^{2} \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{18}\times D_{22}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Automorphism Group: $(C_{11}\times A_4).C_{30}.C_2^2$
Outer Automorphisms: $S_4\times C_{30}$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{330}.C_{30}.C_2^6$
$\operatorname{Aut}(H)$ $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed