Properties

Label 518400.o.144._.BM
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^2:S_3^2$
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(3,9,7,4,6)(13,14)(15,16), (1,8)(2,5)(3,7)(4,6)(11,16)(12,13), (1,3)(2,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^2.S_5^2:C_2^2$
Order: \(518400\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr C_2.A_5^2.D_4$
$\operatorname{Aut}(H)$ $C_{15}^2.C_2^3.C_2^4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$72$
Möbius function not computed
Projective image not computed