Subgroup ($H$) information
| Description: | $D_5^2:S_3^2$ |
| Order: | \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
| Index: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,9)(2,4)(3,5)(6,10)(7,8)(11,16,15,13,14,12), (1,5,7,2,10)(11,14)(12,13) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $S_5^2.S_3^2$ |
| Order: | \(518400\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr C_2.A_5^2.D_4$ |
| $\operatorname{Aut}(H)$ | $C_{15}^2.C_2^3.C_2^4$ |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Normal closure: | not computed |
| Core: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Number of subgroups in this conjugacy class | $72$ |
| Möbius function | not computed |
| Projective image | not computed |