Properties

Label 51840.o.12.c1
Order $ 2^{5} \cdot 3^{3} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^2\times S_5$
Order: \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,7,2)(3,8,6)(4,5,9), (1,4)(2,5)(3,8)(7,9)(10,11), (2,7)(3,9)(4,6)(5,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $S_5\times C_3^2:\GL(2,3)$
Order: \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$5$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_3^2:\GL(2,3)$, of order \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_5\times \SOPlus(4,2)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$W$$S_5\times \SOPlus(4,2)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_5\times \SOPlus(4,2)$
Normal closure:$S_5\times C_3^2:\GL(2,3)$
Core:$\GL(2,4):D_6$
Minimal over-subgroups:$C_3^2:D_6\times S_5$$S_5\times \SOPlus(4,2)$
Maximal under-subgroups:$\GL(2,4):D_6$$S_3^2\times A_5$$A_5:S_3^2$$\GL(2,4):D_6$$A_5:S_3^2$$D_6\times S_5$$S_4\times S_3^2$$F_5\times S_3^2$$C_2\times S_3^3$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$S_5\times C_3^2:\GL(2,3)$