Properties

Label 51840.cr.4.g1.a1
Order $ 2^{5} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(12960\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $e^{2}, de^{2}f, a^{2}e^{3}, b^{16}, b^{20}, cf^{2}, b^{5}, b^{10}, b^{40}, f$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, a semidirect factor, nonabelian, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_2\times F_{81}:C_4$
Order: \(51840\)\(\medspace = 2^{7} \cdot 3^{4} \cdot 5 \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_3^4.C_{80}:C_2.C_2$, of order \(103680\)\(\medspace = 2^{8} \cdot 3^{4} \cdot 5 \)
$\operatorname{Aut}(H)$ not computed
$W$$F_{81}:C_4$, of order \(25920\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times F_{81}:C_4$
Complements:$C_4$ $C_4$
Minimal over-subgroups:$C_2\times C_3^4.C_{80}.C_2$
Maximal under-subgroups:$C_3^4:(C_8\times D_5)$$F_{81}$$C_3^4.C_{40}.C_2$$C_3^4:\OD_{32}$$C_{80}:C_2$
Autjugate subgroups:51840.cr.4.g1.b1

Other information

Möbius function$0$
Projective image$C_2\times F_{81}:C_4$