Subgroup ($H$) information
| Description: | $C_2^4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(2\) |
| Generators: |
$\langle(6,14)(8,11)(9,10)(12,13), (6,10)(8,13)(9,14)(11,12), (6,14)(9,10), (6,9)(10,14)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $A_4^2:S_3^2$ |
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_3^2:S_3^2$ |
| Order: | \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $C_3^2:\GL(2,3)\times D_6$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Outer Automorphisms: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3\times A_4^2).D_6^2$ |
| $\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $W$ | $C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Related subgroups
Other information
| Möbius function | $162$ |
| Projective image | $A_4^2:S_3^2$ |