Properties

Label 5184.sj.324.a1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(6,14)(8,11)(9,10)(12,13), (6,10)(8,13)(9,14)(11,12), (6,14)(9,10), (6,9)(10,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $A_4^2:S_3^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)\times D_6$, of order \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times A_4^2).D_6^2$
$\operatorname{Aut}(H)$ $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2:C_2^3$
Normalizer:$A_4^2:S_3^2$
Complements:$C_3^2:S_3^2$
Minimal over-subgroups:$C_2^3\times C_6$$C_2^3\times C_6$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^3\times C_6$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^2:A_4$$C_2^5$$C_2^2\wr C_2$$C_2^2\wr C_2$
Maximal under-subgroups:$C_2^3$$C_2^3$

Other information

Möbius function$162$
Projective image$A_4^2:S_3^2$