Properties

Label 5184.og.6.a1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3^3$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,3,9)(4,6,5), (2,3)(5,6)(7,8)(10,11,13,12), (10,13)(11,12), (2,9), (1,8,7)(2,9,3)(4,6,5), (2,9)(4,6), (2,3)(4,6,5)(7,8), (4,5,6)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_3^3:S_4$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_4\times S_3\wr S_3$
Complements:$S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$S_3^3:C_{12}$$C_4\times S_3^3:C_2$
Maximal under-subgroups:$C_2\times S_3^3$$C_{12}:S_3^2$$C_2.S_3^3$$C_{12}:S_3^2$$C_2.S_3^3$$C_{12}\times S_3^2$$C_2.S_3^3$$C_2.D_6^2$

Other information

Möbius function$3$
Projective image$S_3\wr S_3$