Properties

Label 5184.og.108.cp1.b1
Order $ 2^{4} \cdot 3 $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,9), (2,9)(4,5), (1,8)(2,9), (1,4,2)(3,7,6)(5,9,8), (2,4)(3,6)(5,9)(10,13)(11,12)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2^4.D_6$
Normal closure:$S_3\wr S_3$
Core:$C_1$
Minimal over-subgroups:$S_3\wr S_3$$C_2^2\times S_4$
Maximal under-subgroups:$C_2\times A_4$$S_4$$S_4$$C_2\times D_4$$D_6$
Autjugate subgroups:5184.og.108.cp1.a15184.og.108.cp1.c15184.og.108.cp1.d1

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_4\times S_3\wr S_3$