Properties

Label 5184.in.4.c1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_{18}$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, d^{2}, b^{6}, c^{2}, b^{14}de, e^{3}, d^{3}, e^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(D_4\times D_9)$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_6^3.S_3^2$, of order \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
$W$$C_6^2:D_{18}$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:(D_4\times D_9)$
Minimal over-subgroups:$C_2^2\times C_6^2.(C_3\times S_3)$$C_6^3.D_6$$C_6^3.D_6$
Maximal under-subgroups:$C_6^2:C_{18}$$C_6^2:D_9$$C_6^2.D_6$$C_6^3:C_2$$C_3^2:D_{18}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$C_6^3.D_6$