Properties

Label 5184.in.24.c1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $c^{2}, e^{3}, d^{3}e^{3}, b^{8}d^{4}e^{4}, d^{2}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^2:(D_4\times D_9)$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^2$
Normalizer:$C_6^2:(D_4\times D_9)$
Minimal over-subgroups:$C_6^2:C_{18}$$C_6^2.A_4$$C_6^2.D_6$$C_6^2.D_6$$C_2^2:C_9\times D_6$$C_6^2.D_6$$C_6^2.C_{12}$$C_3\times C_6.S_4$
Maximal under-subgroups:$C_3^2.A_4$$C_2\times C_6^2$$C_2^2:C_{18}$$C_3\times C_{18}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$C_6^3.D_6$