Subgroup ($H$) information
| Description: | $C_{12}.S_4$ |
| Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$ad^{4}, d^{3}, b^{6}, c, e^{3}, c^{2}, b^{8}de$
|
| Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $C_6^2:(D_4\times D_9)$ |
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^2\times C_6^2.C_3^3.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_6^2.S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $C_2^2:D_{18}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_6^3.D_6$ |