Properties

Label 5184.in.18.by1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ad^{4}, d^{3}, b^{6}, c, e^{3}, c^{2}, b^{8}de$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:(D_4\times D_9)$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2.S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$C_2^2:D_{18}$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_2^4:D_{18}$
Normal closure:$C_6^3.D_6$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$C_6.(S_3\times S_4)$$C_2^4:D_{18}$
Maximal under-subgroups:$C_2^2:D_{18}$$C_2^2:C_{36}$$C_6.S_4$$C_{12}:D_4$$C_4\times D_9$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^3.D_6$