Properties

Label 5184.in.18.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{9}, e^{2}, c^{2}, c, d^{2}, d^{3}, e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^2:(D_4\times D_9)$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_9$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)
Outer Automorphisms: $C_3$, of order \(3\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6^2.C_3^3.C_2^3$
$\operatorname{Aut}(H)$ $(C_2^4\times C_3:S_3).C_2^6.S_3^2$
$W$$C_6.S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2\times C_6$
Normalizer:$C_6^2:(D_4\times D_9)$
Complements:$D_9$ $D_9$ $D_9$ $D_9$
Minimal over-subgroups:$C_6^3:C_2^2$$C_3^2:D_4^2$
Maximal under-subgroups:$C_2^2\times C_6^2$$C_6^2:C_2^2$$C_6^2:C_4$$C_6^2:C_2^2$$C_6^2:C_2^2$$C_6^2:C_2^2$$C_6^2:C_2^2$$C_2^3:D_6$$C_2^3:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^3.D_6$