Properties

Label 5184.ff.864.b1
Order $ 2 \cdot 3 $
Index $ 2^{5} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,12,8)(3,9,7), (13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_6.S_3^2$
Normalizer:$C_6.S_3^3$
Normal closure:$C_3^3\times C_6$
Core:$C_2$
Minimal over-subgroups:$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$D_6$$D_6$$C_{12}$$C_3:C_4$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$16$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3:S_3^3:C_2^2$