Properties

Label 5184.ff.4.a1
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^3\times C_6).D_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,11,4)(3,9,7), (1,2)(3,6)(4,12,11,8)(5,7,10,9)(13,15,14,16), (4,11)(6,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, a semidirect factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_3^4.Q_8.D_6.C_2^2$
$W$$C_3:S_3^3:C_2^2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_3^4:C_4^2:C_2^2$
Complements:$C_2^2$
Minimal over-subgroups:$C_3:S_3^3:C_4$$C_3^4:(C_4\times D_4)$$C_3^4:(C_4\times D_4)$
Maximal under-subgroups:$C_3^4:C_2^3$$C_3^3:(C_4\times S_3)$$C_2\times C_3^4:C_4$$S_3^2:C_4$$S_3^2:C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$2$
Projective image$C_3:S_3^3:C_2^2$