Properties

Label 5184.ff.36.f1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,2)(3,6,7,5,9,10)(4,8)(11,12), (1,3)(2,5)(4,9)(6,8)(7,11)(10,12)(13,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $D_6^2:(C_2\times S_4)$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:D_4$
Normal closure:$C_6:S_3^3$
Core:$C_2$
Minimal over-subgroups:$C_2\times S_3^3$$C_6^2:D_4$
Maximal under-subgroups:$C_6\times D_6$$S_3\times D_6$$S_3\times D_6$$C_6:D_6$$S_3\times D_6$$S_3\times D_6$$C_2^2\times D_6$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3:S_3^3:C_2^2$