Properties

Label 5184.ff.162.d1
Order $ 2^{5} $
Index $ 2 \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(2,5)(4,9)(6,8)(7,11)(10,12)(13,14)(15,16), (6,10)(7,9), (4,11)(6,10)(7,9)(8,12), (1,2)(3,5)(4,8)(6,9)(7,10)(11,12), (13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_4^2:C_2^2$
Normal closure:$C_3^4:(C_2^2\times D_4)$
Core:$C_2$
Minimal over-subgroups:$C_6^2:D_4$$C_4^2:C_2^2$
Maximal under-subgroups:$C_2^4$$C_2\times D_4$$C_2^2\times C_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3:S_3^3:C_2^2$