Subgroup ($H$) information
Description: | $C_2^2\times D_4$ |
Order: | \(32\)\(\medspace = 2^{5} \) |
Index: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\langle(1,3)(2,5)(4,9)(6,8)(7,11)(10,12)(13,14)(15,16), (6,10)(7,9), (4,11)(6,10)(7,9)(8,12), (1,2)(3,5)(4,8)(6,9)(7,10)(11,12), (13,14)(15,16)\rangle$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_3^4:C_4^2:C_2^2$ |
Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.C_2^3.C_2^5.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $81$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_3:S_3^3:C_2^2$ |