Properties

Label 5184.ff.144.bs1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,7,9)(5,10,6), (4,11)(6,10)(7,9)(8,12), (1,3)(2,5)(4,9,11,7)(6,12,10,8)(13,14)(15,16), (1,4,11)(2,8,12)(3,7,9)(5,10,6)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $F_9:C_2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2:D_4$
Normal closure:$C_2\times C_3^4:C_4$
Core:$C_1$
Minimal over-subgroups:$C_3^4:C_4$$C_2\times C_3^2:C_4$$\SOPlus(4,2)$$C_2\times C_3^2:C_4$
Maximal under-subgroups:$C_3:S_3$$C_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$C_3^4:C_4^2:C_2^2$