Properties

Label 5184.de.648.b1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $abd^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $(C_3\times C_6^3):D_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_6.C_2^4.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_6:D_6$
Normalizer:$C_6^2:C_2^3$
Normal closure:$(C_3\times C_6^3):D_4$
Core:$C_2^2$
Minimal over-subgroups:$C_3\times D_4$$C_3:D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$4$
Möbius function not computed
Projective image not computed