Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
Exponent: | \(2\) |
Generators: |
$ad^{3}, e^{3}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $(C_3\times C_6^3):D_4$ |
Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.Q_8.C_6.C_2^4.C_2^5$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_6^2:C_2^2$ | |||
Normalizer: | $C_6^2:C_2^2$ | |||
Normal closure: | $C_6^2:S_3^2$ | |||
Core: | $C_1$ | |||
Minimal over-subgroups: | $C_2\times C_6$ | $D_6$ | $C_2^3$ | $C_2^3$ |
Maximal under-subgroups: | $C_2$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $144$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | $(C_3\times C_6^3):D_4$ |