Properties

Label 5184.dc.144.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,14)(11,13), (7,12)(8,9)(10,14)(11,13), (4,5,6), (1,2,3)(4,6,5)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $(C_3\times C_6^3).D_4$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3^2:C_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_6^2:D_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.Q_8.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times \GL(2,3)$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3\times C_6^3$
Normalizer:$(C_3\times C_6^3).D_4$
Minimal over-subgroups:$C_3\times C_6^2$$C_3\times C_6^2$$C_2\times C_6^2$$C_6\times D_6$$C_6:D_6$$C_6:D_6$$C_6:C_{12}$
Maximal under-subgroups:$C_3\times C_6$$C_3\times C_6$$C_2\times C_6$$C_2\times C_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image not computed