Properties

Label 5160.d.215.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 5 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:Q_8$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $ab^{954}, b^{645}, b^{1290}, b^{1720}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{645}:Q_8$
Order: \(5160\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 43 \)
Exponent: \(2580\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{215}$
Order: \(215\)\(\medspace = 5 \cdot 43 \)
Exponent: \(215\)\(\medspace = 5 \cdot 43 \)
Automorphism Group: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{84}$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5\times C_5^2:D_{20}$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times D_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{430}$
Normalizer:$C_{645}:Q_8$
Complements:$C_{215}$
Minimal over-subgroups:$C_{129}:Q_8$$C_{15}:Q_8$
Maximal under-subgroups:$C_{12}$$C_3:C_4$$C_3:C_4$$Q_8$

Other information

Möbius function$1$
Projective image$D_5^3.C_2^2$