Properties

Label 5160.b.5.a1.a1
Order $ 2^{3} \cdot 3 \cdot 43 $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1032}$
Order: \(1032\)\(\medspace = 2^{3} \cdot 3 \cdot 43 \)
Index: \(5\)
Exponent: \(1032\)\(\medspace = 2^{3} \cdot 3 \cdot 43 \)
Generators: $a^{1290}, a^{2580}, a^{120}, a^{3440}, a^{645}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{5160}$
Order: \(5160\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 43 \)
Exponent: \(5160\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 43 \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,5,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4\times C_{84}$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^3\times C_{42}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{5160}$
Normalizer:$C_{5160}$
Complements:$C_5$
Minimal over-subgroups:$C_{5160}$
Maximal under-subgroups:$C_{516}$$C_{344}$$C_{24}$

Other information

Möbius function$-1$
Projective image$C_5$