Properties

Label 516.12.6.b1.b1
Order $ 2 \cdot 43 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{43}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $ab^{3}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3\times D_{86}$
Order: \(516\)\(\medspace = 2^{2} \cdot 3 \cdot 43 \)
Exponent: \(258\)\(\medspace = 2 \cdot 3 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{43}:(C_2^2\times C_{42})$
$\operatorname{Aut}(H)$ $F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
$\operatorname{res}(S)$$F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{43}$, of order \(86\)\(\medspace = 2 \cdot 43 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{86}$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$C_3\times D_{43}$$D_{86}$
Maximal under-subgroups:$C_{43}$$C_2$
Autjugate subgroups:516.12.6.b1.a1

Other information

Möbius function$1$
Projective image$C_3\times D_{86}$