Properties

Label 512.7532443.512.a1
Order $ 1 $
Index $ 2^{9} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(512\)\(\medspace = 2^{9} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_2^3.C_2^6$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3.C_2^6$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: Group of order \(2415919104\)\(\medspace = 2^{28} \cdot 3^{2} \)
Outer Automorphisms: Group of order \(301989888\)\(\medspace = 2^{25} \cdot 3^{2} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2415919104\)\(\medspace = 2^{28} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^3.C_2^6$
Normalizer:$C_2^3.C_2^6$
Complements:$C_2^3.C_2^6$
Minimal over-subgroups:$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed