Properties

Label 512.7532443.4.h1
Order $ 2^{7} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b, c, d, g, f$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^3.C_2^6$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2415919104\)\(\medspace = 2^{28} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^{12}.\POPlus(4,3)$, of order \(2359296\)\(\medspace = 2^{18} \cdot 3^{2} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4\times C_4$
Normalizer:$C_2^3.C_2^6$
Complements:$C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_2^5:D_4$
Maximal under-subgroups:$C_2^3:D_4$$D_4\times C_2^3$$C_2^4:C_4$$C_2^6$

Other information

Number of subgroups in this autjugacy class$32$
Number of conjugacy classes in this autjugacy class$32$
Möbius function not computed
Projective image not computed