Properties

Label 512.7530076.2.h1
Order $ 2^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2.(C_2^2\times C_4)$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,5)(2,6)(3,7)(4,8)(9,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_4^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $C_2^7.D_4^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\card{W}$\(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4^2:C_2^3$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$D_4^2:C_2^3$
Maximal under-subgroups:$C_2^4.D_4$$C_2^4.D_4$$D_4^2:C_2$$C_2^3.C_2^4$$(C_2^2\times D_4):C_4$$(C_2\times C_4^2):C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image not computed