Properties

Label 512.7530076.16.hn1
Order $ 2^{5} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,7,2,8)(3,5,4,6)(9,12)(10,11)(13,15)(14,16), (9,10)(11,12)(13,14)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_4^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{W}$\(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_4\times D_4$
Normalizer:$D_4^2:C_2^2$
Normal closure:$D_4^2$
Core:$C_4^2$
Minimal over-subgroups:$D_4^2$$C_4^2:C_2^2$$D_4^2$$C_4^2.C_2^2$$D_4:Q_8$
Maximal under-subgroups:$C_4^2$$C_2^2\times C_4$$C_2^2:C_4$$C_2\times D_4$$C_4:C_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed