Properties

Label 512.7530050.4.m1
Order $ 2^{7} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4^2$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(5,7), (1,3)(2,6)(5,7), (1,3)(2,5)(4,8)(6,7)(9,10)(11,12), (4,8)(5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(D_4\times S_4)$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^6.C_2^2\wr D_4$, of order \(131072\)\(\medspace = 2^{17} \)
$\card{W}$\(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^2\times D_4^2$
Normal closure:$C_2^2\times D_4^2$
Core:$C_2^3:D_4$
Minimal over-subgroups:$C_2^2\times D_4^2$
Maximal under-subgroups:$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$$C_2^3:D_4$$C_4^2:C_2^2$$D_4\times C_2^3$$D_4\times C_2^3$$C_4^2:C_2^2$$D_4^2$$D_4^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image not computed