Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(128\)\(\medspace = 2^{7} \) |
Exponent: | \(2\) |
Generators: |
$e, b^{4}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_2^3\times C_8^2$ |
Order: | \(512\)\(\medspace = 2^{9} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Quotient group ($Q$) structure
Description: | $C_2^2\times C_4\times C_8$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Automorphism Group: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) |
Outer Automorphisms: | $C_2^8.C_2\wr D_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_2.C_4^2).C_2^6.C_2^6.C_3.D_4.\PSL(2,7)$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(12582912\)\(\medspace = 2^{22} \cdot 3 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_2^3\times C_8^2$ | |||
Normalizer: | $C_2^3\times C_8^2$ | |||
Minimal over-subgroups: | $C_2\times C_4$ | $C_2\times C_4$ | $C_2^3$ | $C_2^3$ |
Maximal under-subgroups: | $C_2$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $42$ |
Number of conjugacy classes in this autjugacy class | $42$ |
Möbius function | $0$ |
Projective image | $C_2^2\times C_4\times C_8$ |