Subgroup ($H$) information
| Description: | $C_2^2\times C_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Index: | \(32\)\(\medspace = 2^{5} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$ad, b^{2}d^{2}eg, g$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^6:D_4$ |
| Order: | \(512\)\(\medspace = 2^{9} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^{15}.A_4.C_2^6.C_2$ |
| $\operatorname{Aut}(H)$ | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| $\card{W}$ | \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $48$ |
| Number of conjugacy classes in this autjugacy class | $24$ |
| Möbius function | not computed |
| Projective image | not computed |