Properties

Label 512.46623.8.d1.a1
Order $ 2^{6} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac^{3}, c^{4}d^{5}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_8^2:(C_2\times C_4)$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_4^2).C_2^5$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{Aut}(H)$ $D_4^2:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_4.D_4^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_4^2.D_4$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_8^2:(C_2\times C_4)$
Minimal over-subgroups:$(C_4\times C_8):C_4$$C_4^2.D_4$$C_2^3.D_8$
Maximal under-subgroups:$C_2\times \OD_{16}$$C_4^2:C_2$
Autjugate subgroups:512.46623.8.d1.b1

Other information

Möbius function$0$
Projective image$C_4^2.(C_2\times D_4)$