Properties

Label 512.46623.2.c1.a1
Order $ 2^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_8).C_2^3$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(2\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b, c^{4}d^{5}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_8^2:(C_2\times C_4)$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^2\times D_4^2).C_2^5$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{Aut}(H)$ $(C_2\times D_4^2).C_2^5$, of order \(4096\)\(\medspace = 2^{12} \)
$\operatorname{res}(\operatorname{Aut}(G))$$(C_2\times D_4^2).C_2^5$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_4^2.(C_2\times D_4)$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_8^2:(C_2\times C_4)$
Complements:$C_2$
Minimal over-subgroups:$C_8^2:(C_2\times C_4)$
Maximal under-subgroups:$\OD_{16}:D_4$$C_8.\OD_{16}$$C_8.\OD_{16}$$C_8.D_8$$C_8.D_8$

Other information

Möbius function$-1$
Projective image$C_4^2.(C_2\times D_4)$