Properties

Label 512.301254.2.b1
Order $ 2^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(2\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(9,12)(10,14)(11,15)(13,16), (1,4)(2,6)(3,7)(5,8), (1,3)(2,5)(4,7)(6,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:D_4$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_2^6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^6:D_4$
Complements:$C_2$
Minimal over-subgroups:$C_2^6:D_4$
Maximal under-subgroups:$C_2^7$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$$C_2^3\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed