Properties

Label 512.2020.2.a1.a1
Order $ 2^{8} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}:D_8$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(2\)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $c, a^{2}, b^{5}c^{14}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_8\times C_{16}):C_4$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4^2.C_2^3.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $(C_2^4\times C_4).C_2^6.C_2^5$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(8192\)\(\medspace = 2^{13} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$(C_4\times C_8):C_4$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_8\times C_{16}):C_4$
Minimal over-subgroups:$(C_8\times C_{16}):C_4$
Maximal under-subgroups:$C_8:D_8$$C_8:Q_{16}$$C_8\times C_{16}$$C_{16}:D_4$$C_{16}:D_4$

Other information

Möbius function$-1$
Projective image$C_8^2:C_4$