Subgroup ($H$) information
Description: | $C_{16}:D_8$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(2\) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$c, a^{2}, b^{5}c^{14}$
|
Nilpotency class: | $4$ |
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $(C_8\times C_{16}):C_4$ |
Order: | \(512\)\(\medspace = 2^{9} \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $7$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_4^2.C_2^3.C_2^3.C_2^4$ |
$\operatorname{Aut}(H)$ | $(C_2^4\times C_4).C_2^6.C_2^5$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(8192\)\(\medspace = 2^{13} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $(C_4\times C_8):C_4$, of order \(128\)\(\medspace = 2^{7} \) |
Related subgroups
Centralizer: | $C_2^2$ | ||||
Normalizer: | $(C_8\times C_{16}):C_4$ | ||||
Minimal over-subgroups: | $(C_8\times C_{16}):C_4$ | ||||
Maximal under-subgroups: | $C_8:D_8$ | $C_8:Q_{16}$ | $C_8\times C_{16}$ | $C_{16}:D_4$ | $C_{16}:D_4$ |
Other information
Möbius function | $-1$ |
Projective image | $C_8^2:C_4$ |