Properties

Label 512.10493360.128.M
Order $ 2^{2} $
Index $ 2^{7} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(128\)\(\medspace = 2^{7} \)
Exponent: \(2\)
Generators: $a, g$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_4^2:C_2^5$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{18}.C_2^4.S_3^2$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^7$
Normalizer:$C_2^7$
Normal closure:$C_2^4$
Core:$C_1$
Minimal over-subgroups:$C_2^3$$C_2^3$$C_2^3$$C_2^3$$C_2^3$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$1152$
Number of conjugacy classes in this autjugacy class$288$
Möbius function not computed
Projective image not computed