Properties

Label 51090942171709440000.a.42.a1.a1
Order $ 2^{17} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 $
Index $ 2 \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_{20}$
Order: \(1216451004088320000\)\(\medspace = 2^{17} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Index: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Exponent: \(232792560\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Generators: $\langle(2,3,4), (2,3)(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)\rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Ambient group ($G$) information

Description: $S_{21}$
Order: \(51090942171709440000\)\(\medspace = 2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Exponent: \(232792560\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, nonsolvable, and rational.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 42T9215.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(51090942171709440000\)\(\medspace = 2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
$\operatorname{Aut}(H)$ Group of order \(2432902008176640000\)\(\medspace = 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$21$
Möbius function not computed
Projective image not computed