Subgroup ($H$) information
Description: | $A_{20}$ |
Order: | \(1216451004088320000\)\(\medspace = 2^{17} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
Index: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Exponent: | \(232792560\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
Generators: |
$\langle(2,3,4), (2,3)(4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)\rangle$
|
Derived length: | $0$ |
The subgroup is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Ambient group ($G$) information
Description: | $S_{21}$ |
Order: | \(51090942171709440000\)\(\medspace = 2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
Exponent: | \(232792560\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
Derived length: | $1$ |
The ambient group is nonabelian, almost simple, nonsolvable, and rational.
Quotient set structure
Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 42T9215.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(51090942171709440000\)\(\medspace = 2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
$\operatorname{Aut}(H)$ | Group of order \(2432902008176640000\)\(\medspace = 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $21$ |
Möbius function | not computed |
Projective image | not computed |