Properties

Label 5040.bh.8.f1.a1
Order $ 2 \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{105}:C_6$
Order: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $b, d^{70}, d^{63}, c^{4}, d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $S_3\times F_5\times F_7$
Order: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$D_{70}:C_{12}$, of order \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$S_3\times F_5\times F_7$
Complements:$C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$ $C_2\times C_4$
Minimal over-subgroups:$D_{105}:C_6$$C_{35}:C_6^2$$D_{15}:F_7$
Maximal under-subgroups:$C_{105}:C_3$$C_3\times D_{35}$$C_{35}:C_6$$C_{35}:C_6$$C_3\times F_7$$C_3^2\times D_5$

Other information

Möbius function$0$
Projective image$S_3\times F_5\times F_7$