Subgroup ($H$) information
| Description: | $C_{15}\times F_7$ |
| Order: | \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Index: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
| Generators: |
$bc^{6}, d^{70}, d^{63}, c^{4}, d^{15}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $S_3\times F_5\times F_7$ |
| Order: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Exponent: | \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2\times C_4$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $C_4\times S_3\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
| $W$ | $D_{14}:C_{12}$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
| Möbius function | $0$ |
| Projective image | $S_3\times F_5\times F_7$ |