Properties

Label 5040.bh.2.c1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{35}:C_{12}$
Order: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $a, d^{63}, c^{4}, c^{6}, c^{3}, d^{15}, d^{70}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $S_3\times F_5\times F_7$
Order: \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times F_5\times F_7$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$S_3\times F_5\times F_7$
Maximal under-subgroups:$C_{35}:C_6\times S_3$$C_{105}:C_{12}$$C_{105}:C_{12}$$C_{35}:C_4\times S_3$$C_{70}:C_{12}$$D_6.F_7$$D_{15}:C_{12}$

Other information

Möbius function$-1$
Projective image$S_3\times F_5\times F_7$