Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Exponent: | \(3\) |
| Generators: |
$c^{2}, d^{2}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_3^2\times F_8$ |
| Order: | \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
| Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $F_8$ |
| Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Automorphism Group: | $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Outer Automorphisms: | $C_3$, of order \(3\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $F_8:C_3\times \GL(2,3)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_3^2\times F_8$ | |||
| Normalizer: | $C_3^2\times F_8$ | |||
| Complements: | $F_8$ | |||
| Minimal over-subgroups: | $C_3\times C_{21}$ | $C_3\times C_6$ | ||
| Maximal under-subgroups: | $C_3$ | $C_3$ | $C_3$ | $C_3$ |
Other information
| Möbius function | $8$ |
| Projective image | $F_8$ |