Properties

Label 504.173.56.a1.a1
Order $ 3^{2} $
Index $ 2^{3} \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(3\)
Generators: $c^{2}, d^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^2\times F_8$
Order: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $F_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_8:C_3\times \GL(2,3)$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2\times F_8$
Normalizer:$C_3^2\times F_8$
Complements:$F_8$
Minimal over-subgroups:$C_3\times C_{21}$$C_3\times C_6$
Maximal under-subgroups:$C_3$$C_3$$C_3$$C_3$

Other information

Möbius function$8$
Projective image$F_8$