Properties

Label 5038848.eo.24.B
Order $ 2^{5} \cdot 3^{8} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4.C_6^3:A_4$
Order: \(209952\)\(\medspace = 2^{5} \cdot 3^{8} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(11,14)(13,17), (4,9)(10,15)(11,14)(13,17), (2,9,4), (5,10,15), (1,18,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $S_3\times C_3^6.A_4^2:D_4$
Order: \(5038848\)\(\medspace = 2^{8} \cdot 3^{9} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3\times D_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \)
$\operatorname{Aut}(H)$ $C_3^6.C_2^6:S_3^3$, of order \(10077696\)\(\medspace = 2^{9} \cdot 3^{9} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$S_3\times C_3^6.A_4^2:D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed