Properties

Label 500000.dh.10000.A
Order $ 2 \cdot 5^{2} $
Index $ 2^{4} \cdot 5^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{2}b^{2}d^{4}e^{3}f^{2}, c, b^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_5^5.C_{40}:C_4$
Order: \(500000\)\(\medspace = 2^{5} \cdot 5^{6} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_5^4.\OD_{16}$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $C_5^4:(C_4^3:C_2^2)$, of order \(160000\)\(\medspace = 2^{8} \cdot 5^{4} \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^6.C_4^2.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$F_5^2$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_5^4:C_2$
Normalizer:$C_5^5.C_{40}:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_5^5.C_{40}:C_4$