Properties

Label 4970.b.497.a1.a1
Order $ 2 \cdot 5 $
Index $ 7 \cdot 71 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(497\)\(\medspace = 7 \cdot 71 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{355}, b^{142}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary ($p = 2,5$), hyperelementary, metacyclic, and a Z-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{142}:C_{35}$
Order: \(4970\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 71 \)
Exponent: \(4970\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 71 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 7$.

Quotient group ($Q$) structure

Description: $C_{71}:C_7$
Order: \(497\)\(\medspace = 7 \cdot 71 \)
Exponent: \(497\)\(\medspace = 7 \cdot 71 \)
Automorphism Group: $F_{71}$, of order \(4970\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 71 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 7$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{71}:(C_2\times C_{140})$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4970\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 71 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{142}:C_{35}$
Normalizer:$C_{142}:C_{35}$
Complements:$C_{71}:C_7$
Minimal over-subgroups:$C_{710}$$C_{70}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Möbius function$71$
Projective image$C_{71}:C_7$