Properties

Label 49408.1116575.4.c1.a1
Order $ 2^{6} \cdot 193 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1544}.C_8$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $b^{1544}, a^{4}b^{1640}, b^{3088}, a^{2}b^{3108}, b^{772}, ab^{2}, b^{32}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{6176}:C_8$
Order: \(49408\)\(\medspace = 2^{8} \cdot 193 \)
Exponent: \(6176\)\(\medspace = 2^{5} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{772}.C_{12}.C_8^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{772}.C_{96}.C_2^4$
$W$$C_{193}:C_8$, of order \(1544\)\(\medspace = 2^{3} \cdot 193 \)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$C_{6176}:C_8$
Minimal over-subgroups:$C_{3088}:C_8$
Maximal under-subgroups:$C_{1544}:C_4$$D_{193}:C_{16}$$D_{193}:C_{16}$$C_4\times C_{16}$

Other information

Möbius function$0$
Projective image$C_{772}:C_8$