Properties

Label 486.218.54.d1.a1
Order $ 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $bd^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_2\times C_3^2.C_3^3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^5:C_6$, of order \(13122\)\(\medspace = 2 \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(81\)\(\medspace = 3^{4} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_{18}:C_3^2$
Normal closure:$C_9:C_3$
Core:$C_3$
Minimal over-subgroups:$C_9:C_3$$C_9:C_3$$C_3\times C_9$$C_9:C_3$$C_{18}$
Maximal under-subgroups:$C_3$
Autjugate subgroups:486.218.54.d1.b1486.218.54.d1.c1486.218.54.d1.d1486.218.54.d1.e1486.218.54.d1.f1486.218.54.d1.g1486.218.54.d1.h1486.218.54.d1.i1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_6\times \He_3$