Properties

Label 486.213.81.b1
Order $ 2 \cdot 3 $
Index $ 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 26 & 0 \\ 0 & 26 \end{array}\right), \left(\begin{array}{rr} 1 & 9 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_3\times C_6.\He_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3\times \He_3$
Order: \(81\)\(\medspace = 3^{4} \)
Exponent: \(3\)
Automorphism Group: $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Outer Automorphisms: $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(C_3\times S_3^2)$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(13122\)\(\medspace = 2 \cdot 3^{8} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_6.\He_3$
Normalizer:$C_3\times C_6.\He_3$
Minimal over-subgroups:$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_{18}$$C_{18}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3\times \He_3$