Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(81\)\(\medspace = 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
26 & 0 \\
0 & 26
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
0 & 19
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.
Ambient group ($G$) information
Description: | $C_3\times C_6.\He_3$ |
Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3.\He_3$ |
Order: | \(81\)\(\medspace = 3^{4} \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Automorphism Group: | $C_3^3.(C_3\times S_3)$, of order \(486\)\(\medspace = 2 \cdot 3^{5} \) |
Outer Automorphisms: | $C_3\times C_6$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^5.(C_3\times S_3^2)$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4374\)\(\medspace = 2 \cdot 3^{7} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times C_6.\He_3$ | |
Normalizer: | $C_3\times C_6.\He_3$ | |
Complements: | $C_3.\He_3$ | |
Minimal over-subgroups: | $C_3\times C_6$ | $C_3\times C_6$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $3$ |
Möbius function | $0$ |
Projective image | $C_3.\He_3$ |