Properties

Label 486.213.54.d1
Order $ 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 10 & 9 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3\times C_6.\He_3$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(C_3\times S_3^2)$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(1458\)\(\medspace = 2 \cdot 3^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2\times C_{18}$
Normalizer:$C_3^2\times C_{18}$
Normal closure:$C_3^3$
Core:$C_3$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$
Maximal under-subgroups:$C_3$$C_3$$C_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_6.\He_3$